New Fixed Point Theorems for Nonlinear Multivalued Maps and MT -Functions in Complete Metric Spaces
نویسنده
چکیده
The famous Banach contraction principle (see, e.g., [1]) plays an important role in various fields of nonlinear analysis and applied mathematical analysis. Many authors investigated and established generalizations in various different directions of the Banach contraction principle in the past; see [1-22] and references therein. In 1969, Nadler [2] first proved a set-valued generalized version of the Banach contraction principle. In 1989, Mizoguchi and Takahashi [3] proved the following fixed point theorem which is a generalization of Nadler’s fixed point theorem.
منابع مشابه
Generalized multivalued $F$-contractions on non-complete metric spaces
In this paper, we explain a new generalized contractive condition for multivalued mappings and prove a fixed point theorem in metric spaces (not necessary complete) which extends some well-known results in the literature. Finally, as an application, we prove that a multivalued function satisfying a general linear functional inclusion admits a unique selection fulfilling the corresp...
متن کاملCoupled fixed point on ordered cone metric spaces with application in integral equations
Our theorems are on ordered cone metric spaces which are not necessarily normal. In the end, we describe the application of the main results in the integral equation.Although Du in [W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Analysis, 72(2010) 2259-2261.], showed that the fixed point results in the setting of cone...
متن کاملIndicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps
In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...
متن کاملGeneralized multivalued $F$-weak contractions on complete metric spaces
In this paper, we introduce the notion of generalized multivalued $F$- weak contraction and we prove some fixed point theorems related to introduced contraction for multivalued mapping in complete metric spaces. Our results extend and improve the results announced by many others with less hypothesis. Also, we give some illustrative examples.
متن کاملFixed point theorems for weakly contractive mappings on g-Metric spaces and a homotopy result
In this paper, we give some xed point theorems for '-weak contractivetype mappings on complete G-metric space, which was given by Zaed andSims [1]. Also a homotopy result is given.
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کامل